Profiling C++ code with Callgrind

Often times, we have to write code to perform tasks whose complexity vary from mundane, such as retrieving and organizing data, to highly complex, such as simulations CFD simulations comprising the spine of a project. In either case, depending on the complexity of the task and amount of data to be processed, it may happen for the newborn code to leave us staring at an underscore marker blinking gracefully for hours on a command prompt during its execution until the results are ready, leading to project schedule delays and shortages of patience. Two standard and preferred approaches to the problem of time intensive codes are to simplify the algorithm and to make the code more efficient. In order to better select the parts of the code to work on, it is often useful to first find the parts of the code in which more time by profiling the code.

In this post, I will show how to use Callgrind, part of Valgrind, and KCachegrind to profile C/C++ codes on Linux — unfortunately, Valgrind is not available for Windows or Mac, although it can be ran on cluster from which results can be downloaded and visualized on Windows with QCachegrind. The first step is to install Valgrind and KCachegrind by typing the following commands in the terminal of a Debian based distribution, such as Ubuntu (equivalent yum commands area available for Red Hat based distributions):

$ sudo apt-get install valgrind
$ sudo apt-get install kcachegrind

Now that the required tools are installed, the next step is to compile your code with GCC/G++ (with a make file, cmake, IDE or by running the compiler directly from the terminal) and then run the following command in a terminal (type ctrl+shift+T to open the terminal):

$ valgrind --tool=callgrind path/to/your/compiled/program program_arguments

Callgrind will then run your program with some instrumentation added to its execution to measure time expenditures and cache use by each function in your code. Because of the instrumentation, Your code will take considerably longer to run under Callgrind than it typically would, so be sure to run a representative task that is as small as possible when profiling your code. During its execution, Callgrind will output a report similar to the one below on terminal itself:

==12345== Callgrind, a call-graph generating cache profiler
==12345== Copyright (C) 2002-2015, and GNU GPL'd, by Josef Weidendorfer et al.
==12345== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==12345== Command: path/to/your/compiled/program program_arguments
==12345== For interactive control, run 'callgrind_control -h'.
==12345== Events    : Ir
==12345== Collected : 4171789731
==12345== I   refs:      4,171,789,731

The report above shows that it collected 4 billion events in order to generate the comprehensive report saved in the file callgrind.out.12345 — 12345 is here your process id, shown in the report above. Instead of submerging your soul into a sea of despair by trying to read the output file in a text editor, you should load the file into KCachegrind by typing:

$ kcachegrind calgrind.out.12345

You should now see a screen like the one below:


The screenshot above shows the profiling results for my code. The left panel shows the functions called by my code sorted by total time spent inside each function. Because functions call each other, callgrind shows two cost metrics as proxies for time spent in each function: Incl., showing the total cost of a function, and self, showing the time spent in each function itself discounting the callees. By clicking on “Self” to order to functions by the cost of the function itself, we sort the functions by the costs of their own codes, as shown below:


Callgrind includes functions that are native to C/C++ in its analysis. If one of them appears in the highest positions of the left panel, it may be the case to try to use a different function or data structure that performs a similar task in a more efficient way. Most of the time, however, our functions are the ones in most of the top positions in the list. In the example above, we can see that a possible first step I can take to improve the time performance of my code is to make function “ContinuityModelROF::shiftStorage” more efficient. A few weeks ago, however, the function “ContinuityModel::continuityStep” was ranked first with over 30% of the cost, followed by a C++ map related function. I then replaced a map inside that function by a pointer vector, resulting in the drop of my function’s cost to less than 5% of the total cost of the code.

In case KCachegrind shows that a given function that is called from multiple places in the code is costly, you may want to know which function is the main culprit behind the costly calls. To do this, click on the function of interest (in this case, “_memcpy_sse2_unalight”) in the left panel, and then click on “Callers” in the right upper panel and on “Call Graph” in the lower right panel. This will show in list and graph forms the calls made to the function by other functions, and the asociated percent costs. Unfortunately, I have only the function “ContinuityModelROF::calculateROF” calling “_memcpy_sse2_unalight,” hence the simple graph, but the graph would be more complex if multiple functions made calls to “_memcpy_sse2_unalight.”

I hope this saves you at least the time spend reading this post!