Saving d3.parcoords to SVG

d3.parcoords is a great library for making interactive parallel coordinate plots. A major issue, however, is that it is pain to get the resulting plots into a format suitable for publication. In this blog post, I will show how we can turn a d3.parcoords plot into an SVG document, which we can save locally. SVG is an XML based format for vector graphics, so it is ideal for publications.

This blog post is an example of how to get the SVG data. It is however far from complete, and there might be better ways of achieving some of the steps. Any comments or suggestions on how to improve the code are welcome. I wrote this while learning javascript, without any prior experience with respect to web technology.

First, how is a d3.parcoords plot structured? It is composed of five elements: 4 HTML5 canvas layers, and a single SVG layer. the SVG layer contains the axis for each dimension. The 4 canvas layers are marks, highlight, brushed, and foreground. I am not sure what the function is of the first two, but brushed contains the lines that are selected through brushing, while foreground contains all the remaining lines.

In order to export a d3.parcoords figure as pure svg, we need to somehow replace the HTML canvas with something that has the same interface, but generates SVG instead. Luckily there are several javascript libraries that do this. See for an overview. In this example, I am using , which is a recent library that still appears to be maintained.

The basic idea is the following:

  • replace the normal HTML5 canvas.context for each layer with the one from canvas2svg, and render the plot
  • extract the axis svg
  • extract the SVG from the 5 canvas layers, and combine the 5 layers into a single svg document
  • save it
  • reset the canvas

To make this work, we are depending on several javascript libraries in addition to the default dependencies of d3.parcoords. These are

Replace canvas.context

In order to replace the canvas.context for each layer, we iterate over the names of the layers. d3.parcoords saves the contexts in an internal object, indexed by name. We keep track of the old context for each layer, because this makes restoring a lot easier at the end. We instantiate the C2S context (the class provided by canvas2svg), by specifying the width and height of the plot. In this case, I have hardcoded them for simplicity, but it would be better to extract them from the HTML or CSS.

const layerNames = ["marks", "highlight", "brushed", "foreground"];

const oldLayers = {};
let oldLayerContext;
let newLayerContext;
let layerName;
for (let i=0; i<canvasLayers.length; i++){
    layerName = layerNames[i];

    oldLayerContext = pc0.ctx[layerName]; //pc0 is the d3.parcoords plot
    newLayerContext = new C2S(720, 200); 

    oldLayers[layerName] = oldLayerContext;
    pc0.ctx[layerName] = newLayerContext;

Extract the Axis svg

Getting the axis svg is straightforward. We select the svg element in the dom, serialise it to a string and next use jQuery to create a nice XML document out of the string.

const svgAxis = new XMLSerializer().serializeToString('svg').node());
const axisXmlDocument = $.parseXML(svgAxis);

The only problem with this approach is that the SVG does not contain the style information, which is provided in the CSS. So, we need to inline this information. To do so, I created two helper functions. The first helper function allows us to set an attribute on elements that have the same tag. The second does the same, but based on class name.

// helper function for saving svg
function setAttributeByTag(xmlDocument, tagName, attribute, value){
    const paths = xmlDocument.getElementsByTagName(tagName);
    for (let i = 0; i < paths.length; i++) {
        paths[i].setAttribute(attribute, value);

// helper function for saving svg
function setAttributeByClass(xmlDocument, className, attribute, value){
    const paths = xmlDocument.getElementsByClassName(className);
    for (let i = 0; i < paths.length; i++) {
        paths[i].setAttribute(attribute, value);

We can now  use  these helper functions to inline some CSS information. Note that this is an incomplete subset of all the CSS information used by d3.parcoords. A future extension would be to extract all the d3.parcoord style information from the CSS and inline it.

setAttributeByTag(axisXmlDocument, "axis", "fill", "none");
setAttributeByTag(axisXmlDocument, "path", "stroke", "#222");
setAttributeByTag(axisXmlDocument, "line", "stroke", "#222");
setAttributeByClass(axisXmlDocument, "background", "fill", "none");

Extract the SVG from each layer

We now  have an XML document to which we can add the SVG data of each of our layers. In order to keep track of the structure of the SVG, I have chosen to first create a new group node, and subsequently add each layer to this new group as a child. To make sure that this group is positioned correctly, I clone the main group node of the axis svg, remove it’s children, and insert this new node at the top of the XML document.

const oldNode = axisXmlDocument.getElementsByTagName('g')[0];
const newNode = oldNode.cloneNode(true);
while (newNode.hasChildNodes()){
axisXmlDocument.documentElement.insertBefore(newNode, oldNode);

There is some trickery involved in what I am doing here. SVG groups are rendered on top of each other, in the order in which they appear in the XML document. It appears that one can provide a z-order as well according to the SVG 2.0 specification, but I have not pursued that direction here. By adding the newly created node to the top, I ensure that the axis information is at the end of the XML document, and thus always on top of all the other layers. For the same reason, I have also deliberately sorted the canvas layer names.

Now  that we have a new node, we can iterate over our canvas layers and extract the svg data from them. Next, we parse the xml string to turn it into an XML document. We have to overwrite a transform attribute that is used when working on a retina screen, this matters for a html canvas but not for svg. For convenience, I also add the layer name as a class attribute, so in our SVG, we can easily spot each of the canvas layers. The XML document for a given layer contains two main nodes. The first node contains the defs tag, which we don’t need. The second node contains the actual SVG data, which is what we do need.

let svgLines;
let xmlDocument;
for (let i=0; i<layerNames.length; i++){
    // get svg for layer
    layerName = layerNames[i];
    svgLines = pc0.ctx[layerName].getSerializedSvg(true);
    xmlDocument = $.parseXML(svgLines);

    // scale is set to 2,2 on retina screens, this is relevant for canvas
    // not for svg, so we explicitly overwrite it
    xmlDocument.getElementsByTagName("g")[0].setAttribute("transform", "scale(1,1)");

    // for convenience add the name of the layer to the group as class
    xmlDocument.getElementsByTagName("g")[0].setAttribute("class", layerName);

    // add the group to the node
    // each layers has 2 nodes, a defs node and the actual svg
    // we can safely ignore the defs node

Save it

We have all our SVG data in the xml document. All that is left is to turn this back into a string, format the string properly, turn it into a blob, and save it. We can achieve this in three lines.

// turn merged xml document into string
// we also beautify the string, but this is optional
const merged = vkbeautify.xml(new XMLSerializer().serializeToString(axisXmlDocument.documentElement));

// turn the string into a blob and use FileSaver.js to enable saving it
const blob = new Blob([merged], {type:"application/svg+xml"});
saveAs(blob, "parcoords.svg");

Reset context

We now  have saver our SVG file locally, but we have to still put back our old canvas context’s. We have stored these, so we can simply loop over the layer names and put back the old context. In principle, this last step might not be necessary, but I work on machines with a retina screen and ran into scaling issues when trying to use C2s context’s outside of the save function.

// we are done extracting the SVG information so
// put the original canvas contexts back
for (let i=0; i<layerNames.length; i++){
    pc0.ctx[layerNames[i]] = oldLayers[layerNames[i]]

Putting it all together

I have a repo on github with the full code including dependencies etc: .

The code shown in this blog is not complete. For example, brushed plots will not display nice and require some post processing of the SVG.

For those that are more familiar with D3.parcoords, note how the coloring of the lines is dependent on which axis you select. I have connected the color to a click event on the axis to make this possible.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s